Data Validation and Quality Assurance

Ensure that Your Data is Fit to Serve Its Purpose Most Effectively

Use FME data validation tools to efficiently check and repair data from 325+ data sources, including spatial applications, in an automated way and feel confident that it will work properly in its destination system.

FME is trusted by thousands of organizations to ensure that data is:

green-checkmark

Correct    

It contains no inconsistencies or errors

orange-checkmark

Complete    

It has no missing entries for fields where a value is required

yellow-checkmark

Compliant    

It meets the specifications of data model standards


Report on and Fix Any Issues

FME not only identifies problems with datasets, but reports details on what they are and where they exist. If issues exist, FME’s transformation tools can also be used to efficiently repair and filter out bad data. With FME, it’s completely up to you and your specific needs whether you configure workflows to report problems or to fix them or both.

Validate and Repair Data in an Efficient and Automated Way

Author data validation and reparation workflows quickly in FME Desktop’s intuitive graphical interface. Once configured, workflows run without the need for manual intervention, freeing you to work on other tasks. FME workflows are reusable and the settings of its transformer tools are easily adjusted to suit changing requirements - no coding required.


Common Applications of FME's Data Validation Capabilities

Whichever spatial data types you are working with for whichever project - CAD, GIS, BIM, or a combination of the three - FME's spatial data capabilities extend to validation and repair. Once you’ve set the source and destination formats for your particular workflow, FME’s transformer tools can be configured in such a way to determine if there are any issues which will prevent it from working properly in the destination application. For example, use FME to:

  • Validate CAD drawings against specifications governed by regulatory, industry or best practice standards; examples are the AEC National CAD Standard and the Spatial Data Standard for Facilities, Infrastructure and Environment (SDSFIE) for the US Military
    Case Study: Improving Productivity with a Web-Based CAD Validation System
  • Check GIS feature geometry for self-intersecting lines or unclosed polygons, and attribute data for missing entries for mandatory fields
  • Ensure transformations between CAD and GIS data types result in a quality dataset that meets the data format and model specifications required by the end-user’s preferred application
  • Validate BIM data against set rules checking for errors like 3D features that aren’t enclosed

And once again, if there are any problems, FME can be used to clean the data so you can move forward with your project.

Watch how FME is used to validate and repair data during GIS to CAD data translation in FME’s simple graphical user interface

Every database has rules for the structure and contents of the data it warehouses to ensure a consistent level of quality for everyone accessing and using it in their tasks.

FME can be used to validate datasets prior to loading into central repositories, checking for illegal values like blanks and domain list conflicts to make sure that bad data is stopped before it can do any damage to decision making.

Most industries nowadays have developed data standards to facilitate the exchange of information - and most of these are defined using XML. Although very useful for sharing data, XML is a complex format when it comes to its rules for syntax and schema. Whether you’re reading an XML dataset or trying to output your data as XML, you need to ensure that it complies with your industry data standard’s requirements. FME has an ongoing commitment to support XML-based standards validation with tools that have been specially designed to check your data against its rules - without any coding - and report back if, what and where there is a problem. And of course, if there are any problems, FME can be used to fix them.

Watch a demo that shows how FME transformers can be used to validate any XML data


Incorporate Data Validation Steps into Automated Workflows

For greater efficiencies, add data validation steps to FME Server and FME Cloud automated workflows to ensure that automated processes are never tripped up by erroneous data. Data validation steps can be incorporated into FME Server tasks including job scheduling and real-time data processing, and notification services can be used to alert you of any issues encountered.